home *** CD-ROM | disk | FTP | other *** search
- # $Id: BPyMathutils.py 20333 2009-05-22 03:45:46Z campbellbarton $
- #
- # --------------------------------------------------------------------------
- # helper functions to be used by other scripts
- # --------------------------------------------------------------------------
- # ***** BEGIN GPL LICENSE BLOCK *****
- #
- # This program is free software; you can redistribute it and/or
- # modify it under the terms of the GNU General Public License
- # as published by the Free Software Foundation; either version 2
- # of the License, or (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program; if not, write to the Free Software Foundation,
- # Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- #
- # ***** END GPL LICENCE BLOCK *****
- # --------------------------------------------------------------------------
-
- import Blender
- from Blender.Mathutils import *
-
- # ------ Mersenne Twister - start
-
- # Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura.
- # Any feedback is very welcome. For any question, comments,
- # see http://www.math.keio.ac.jp/matumoto/emt.html or email
- # matumoto@math.keio.ac.jp
-
- # The link above is dead, this is the new one:
- # http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.html
- # And here the license info, from Mr. Matsumoto's site:
- # Until 2001/4/6, MT had been distributed under GNU Public License,
- # but after 2001/4/6, we decided to let MT be used for any purpose, including
- # commercial use. 2002-versions mt19937ar.c, mt19937ar-cok.c are considered
- # to be usable freely.
- #
- # So from the year above (1997), this code is under GPL.
-
- # Period parameters
- N = 624
- M = 397
- MATRIX_A = 0x9908b0dfL # constant vector a
- UPPER_MASK = 0x80000000L # most significant w-r bits
- LOWER_MASK = 0x7fffffffL # least significant r bits
-
- # Tempering parameters
- TEMPERING_MASK_B = 0x9d2c5680L
- TEMPERING_MASK_C = 0xefc60000L
-
- def TEMPERING_SHIFT_U(y):
- return (y >> 11)
-
- def TEMPERING_SHIFT_S(y):
- return (y << 7)
-
- def TEMPERING_SHIFT_T(y):
- return (y << 15)
-
- def TEMPERING_SHIFT_L(y):
- return (y >> 18)
-
- mt = [] # the array for the state vector
- mti = N+1 # mti==N+1 means mt[N] is not initialized
-
- # initializing the array with a NONZERO seed
- def sgenrand(seed):
- # setting initial seeds to mt[N] using
- # the generator Line 25 of Table 1 in
- # [KNUTH 1981, The Art of Computer Programming
- # Vol. 2 (2nd Ed.), pp102]
-
- global mt, mti
-
- mt = []
-
- mt.append(seed & 0xffffffffL)
- for i in xrange(1, N + 1):
- mt.append((69069 * mt[i-1]) & 0xffffffffL)
-
- mti = i
- # end sgenrand
-
-
- def genrand():
- global mt, mti
-
- mag01 = [0x0L, MATRIX_A]
- # mag01[x] = x * MATRIX_A for x=0,1
- y = 0
-
- if mti >= N: # generate N words at one time
- if mti == N+1: # if sgenrand() has not been called,
- sgenrand(4357) # a default initial seed is used
-
- for kk in xrange((N-M) + 1):
- y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK)
- mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1]
-
- for kk in xrange(kk, N):
- y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK)
- mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1]
-
- y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK)
- mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1]
-
- mti = 0
-
- y = mt[mti]
- mti += 1
- y ^= TEMPERING_SHIFT_U(y)
- y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B
- y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C
- y ^= TEMPERING_SHIFT_L(y)
-
- return ( float(y) / 0xffffffffL ) # reals
-
- #------ Mersenne Twister -- end
-
-
-
-
- """ 2d convexhull
- Based from Dinu C. Gherman's work,
- modified for Blender/Mathutils by Campell Barton
- """
- ######################################################################
- # Public interface
- ######################################################################
- def convexHull(point_list_2d):
- """Calculate the convex hull of a set of vectors
- The vectors can be 3 or 4d but only the Xand Y are used.
- returns a list of convex hull indicies to the given point list
- """
-
- ######################################################################
- # Helpers
- ######################################################################
-
- def _myDet(p, q, r):
- """Calc. determinant of a special matrix with three 2D points.
-
- The sign, "-" or "+", determines the side, right or left,
- respectivly, on which the point r lies, when measured against
- a directed vector from p to q.
- """
- return (q.x*r.y + p.x*q.y + r.x*p.y) - (q.x*p.y + r.x*q.y + p.x*r.y)
-
- def _isRightTurn((p, q, r)):
- "Do the vectors pq:qr form a right turn, or not?"
- #assert p[0] != q[0] and q[0] != r[0] and p[0] != r[0]
- if _myDet(p[0], q[0], r[0]) < 0:
- return 1
- else:
- return 0
-
- # Get a local list copy of the points and sort them lexically.
- points = [(p, i) for i, p in enumerate(point_list_2d)]
-
- try: points.sort(key = lambda a: (a[0].x, a[0].y))
- except: points.sort(lambda a,b: cmp((a[0].x, a[0].y), (b[0].x, b[0].y)))
-
- # Build upper half of the hull.
- upper = [points[0], points[1]] # cant remove these.
- for i in xrange(len(points)-2):
- upper.append(points[i+2])
- while len(upper) > 2 and not _isRightTurn(upper[-3:]):
- del upper[-2]
-
- # Build lower half of the hull.
- points.reverse()
- lower = [points.pop(0), points.pop(1)]
- for p in points:
- lower.append(p)
- while len(lower) > 2 and not _isRightTurn(lower[-3:]):
- del lower[-2]
-
- # Concatenate both halfs and return.
- return [p[1] for ls in (upper, lower) for p in ls]
-
-
- def plane2mat(plane, normalize= False):
- '''
- Takes a plane and converts to a matrix
- points between 0 and 1 are up
- 1 and 2 are right
- assumes the plane has 90d corners
- '''
- cent= (plane[0]+plane[1]+plane[2]+plane[3] ) /4.0
-
-
- up= cent - ((plane[0]+plane[1])/2.0)
- right= cent - ((plane[1]+plane[2])/2.0)
- z= up.cross(right)
-
- if normalize:
- up.normalize()
- right.normalize()
- z.normalize()
-
- mat= Matrix(up, right, z)
-
- # translate
- mat.resize4x4()
- tmat= Blender.Mathutils.TranslationMatrix(cent)
- return mat * tmat
-
-
- # Used for mesh_solidify.py and mesh_wire.py
-
- # returns a length from an angle
- # Imaging a 2d space.
- # there is a hoz line at Y1 going to inf on both X ends, never moves (LINEA)
- # down at Y0 is a unit length line point up at (angle) from X0,Y0 (LINEB)
- # This function returns the length of LINEB at the point it would intersect LINEA
- # - Use this for working out how long to make the vector - differencing it from surrounding faces,
- # import math
- from math import pi, sin, cos, sqrt
-
- def angleToLength(angle):
- # Alredy accounted for
- if angle < 0.000001: return 1.0
- else: return abs(1.0 / cos(pi*angle/180));
-